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Finite-amplitude convection rolls of an infinite-Prandtl-number fluid in a long channel 
heated from below are investigated. Because of the side walls, the convection rolls 
depend on all three spatial co-ordinates, although only two velocity components are 
of importance for a wide range of Rayleigh numbers and aspect ratios. Accurately 
converged solutions are presented for a range of aspect ratios between 0 (BBnard 
convection) to 100 (Hele Shaw convection) and for Rayleigh numbers up to about 
60 times the critical linear stability value. The influence of rigid versus slip boundaries 
as well as the wavelength of the convection rolls on the heat transport is investigated 
in detail. Comparisons with existing results for the analogous problem of convection 
in a porous medium indicates that the similarity tends to disappear at Rayleigh 
numbers less than a few times the critical value. Whenever possible, the theoretical 
findings are compared with experimental results. In all cases close agreement is found. 

1. Introduction 
For a fluid layer heated from below and of infinite horizontal extent, research 

performed during the past few decades has led to a virtually complete understanding 
of both the mode of convection and the heat transport over a wide range of Rayleigh 
numbers. In  the case of fluids with Prandtl numbers greater than about ten it is 
known that two-dimensional convection rolls are the only stable form of convection 
up to about ten times the critical Rayleigh number a t  the onset of convection, 
R, = 1708 (Busse 1978). In  the present paper we intend to extend this work to the 
case of convection in a confined region with heating from below. 

The introduction of confining walls into the convection layer removes the horizontal 
isotropy and causes the rolls to align themselves with axes perpendicular to the longer 
side of the container. This was first shown theoretically by Davis (1967) and demon- 
strated subsequently by the exact calculations of Davies-Jones (1970), in the case of 
free boundaries, and Frick & Clever (1980), in the case of rigid boundaries. The experi- 
mental work of Ozoe, Sayama & Churchill (1974) has verified the alignment of 
convection rolls suggested by Davis for the onset of convection and demonstrated their 
presence for Rayleigh numbers well into the nonlinear region. As a consequence of the 
presence of side walls the fluid motion depends on all three spatial co-ordinates. The 
viscous drag of the walls tends to restrain motions near the wall and thus introduces a 
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variation of the flow field in the direction of the roll axis. This is reflected by an increase 
in the critical Rayleigh number for the onset of convection as the distance between side 
walls is decreased. Equivalently, at a fixed value of the Rayleigh number for finite- 
amplitude convection the heat transport decreases with decreasing side-wall spacing. 
There is experimental evidence, however, that the influence of aspect ratio on the heat 
transport at  high Rayleigh number is less pronounced than for the critical Rayleigh 
number. This has been shown in the experiment’s of Arnold (19781, Edwards, Arnold 
6 Wu (1979) and Wu 6 Edwards (1980) for various aspect ratios (height to width) 
ranging up to eight and Rayleigh numbers up to about ten times the critical value. In  
the presentpaper this problem is investigated numerically. By studying in detail the 
dependence of the Nusselt number on the Rayleigh number and on the aspect ratio 
results are obtained that cover a much wider range of the parameter space than is 
covered by the experimental investigations. 

In the limit of large aspect ratio the side walls cause a major simplification of the 
convective motions. The dependence of the velocity field in the direction parallel to 
the roll axes becomes quadratic and the resulting motion is referred to as Hele Shaw 
convection. It has been generally assumed for Hele Shaw convection that the heat 
t’ransfer increases relatively strongly with Rayleigh number. In fact, Elder (1967) 
shows a linear relationship, Nu - RfR,, whereas for ordinary convection Nu - Ro’3 
has been generally accepted. Extrapolation of these expressions to large values of R 
a t  fixed aspect ratio would indicate the anomalous result that the side walls cause an 
increase in heat transfer above a certain value of R. We shall explore this interesting 
question by providing heat-transfer results for a wide range of Rayleigh numbers and 
aspect ratios and investigate the range of parameters for which the Hele Shaw approxi- 
mation applies. 

In the general case of convection in a confined region the side walls create an 
additional component of velocity. Unlike the situation in ordinary two-dimensional 
convection rolls, a component of vertical vorticity is generated by the temperature 
gradient parallel to the axis of the rolls. For finite-amplitude convection a t  large 
Prandtl number this remains the only mechanism for generating vertical vorticity . 
At the onset of convection this effect is quite small for rigid horizontal boundaries 
(Frick 6 Clever 1980), and for all practical purposes can be neglected. We therefore 
expect the influence of vertical vorticity to be small for the present case and shall 
neglect it in the analysis. 

It is known that two-dimensional convection rolls become unstable to three- 
dimensional disturbances at R, = 22 600 for a layer of infinite horizontal extent. Here 
the cross-roll instability causes a transition to three-dimensional bimodal convection 
(Busse 1978). For high aspect ratios this instability will be suppressed at the onset of 
convection. The motion is purely two-dimensional owing to the geometry. The 
stability analysis of nonlinear convection in a Hele Shaw cell by Kvernvold (1979) 
shows that the region of stable convection is limited by the Eckhaus instability and 
the oscillatory instability. For an aspect ratio of order unity or lower, transition to 
bimodal convection must be expected at high Rayleigh numbers of the order of R,. 

The paper begins with the formulation of the basic equations and numerical method 
of solution in $ 2. In $3 the results of the calculations and comparisons with previous 
theoretical and experimental work are presented. In $ 4  some concluding remarks are 
given. 
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FIGURE 1.  Geometry and co-ordinate system. 

2. Mathematical formulation of the problem 
We consider a fluid layer with spacing h of infinite horizontal extent in the x- 

direction and with side walls of spacing d in the y-direction as shown in figure 1. 
Constant temperatures Tl and T, (T, > TI) are prescribed at  the upper and lower 
boundaries of the layer. For the non-dimensional description of the problem we use 
the thickness of the layer h as the length scale, h 2 / ~ ,  with K denoting the thermal 
diffisivity, aa the time scale, and (T,/Tl)/R as the temperature scale. Accordingly 
the Navier-Stokes equations for the velocity vector v and the heat equation for the 
deviation of temperature from the conductive state 0 are 

v . v  = 0, (1) 

(2) 

(3) 

1 
v2v+ke-vr = F(v.vv+a,v), 

vae + Rk. v = V .  ve + a, e. 
Here and subsequently, the unit vectors i, j and k denote the x, y and z (vertical) 
directions, respectively. The Laplacian 

V, = a:% + A2aiv + a:* (4) 

reflects the dependence of the problem on the non-dimensional ratio A of the height 
to width. The dependence of the problem has thus been reduced to the three dimension- 
less Darameters 

h 
d’ 

A = -  V , P = -  
VK K ’  

ygAThS R = -  

where y is the coefficient of thermal expansion, v is the kinematic viscosity and g is the 
acceleration due to gravity. All terms that can be expressed as gradients in (2) are 
included in Vr. It is convenient to eliminate the equation of continuity (1) from the 
problem by introducing the following general representation for the solenoidal 
velocity field : 

V = s(b++, (5) 
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where the operators 6 and E are defined by 
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It is worthwhile to note that the unit vector j of the y-direction has been used in the 
representation (6) instead of the more commonly used k of the z-direction, because the 
side walls represent the most important boundary. The use of k would not allow a 
simple boundary-condition description for the case of convection rolls with side walls; 
as it does in the case of a layer of infinite horizontal extent investigated by Clever & 
Busse (1974). 

After operating with j . V x  (Vx)  and j . V x  on (2) we obtain the following equations 
for the scalar variables 9, @ and 8:  

V4A2$ + Aaiz8 = ( I /P)  (6. ((a$ + E$) . V(69  + a$-)) + atV2A29}, ( 7 4  

V2A,$+az8 = (1/P,{E.((S9+E$r).V(6$+6$)) +a$,+}, (7b) 

( 7 4  

(8) 

Equations ( 7 m )  represent a set of coupled nonlinear partial differential equations in 
the scalar variables 9, + and 8. In  addition to the coupling of the variables 9 and @ 
through the differential equations, in the case of rigid upper and lower surfaces this 
coupling occurs in the boundary conditions as well, as long as both 9 and $ are present 
(see Prick & Clever 1980). As has been shown by Davies-Jones (1970) in the case of 
free boundaries for the linear stability problem, solutions of the equations which 
contain components of both 9 and $ represent a more general solution for which the 
critical Rayleigh number for the onset of convection must be lower than for solutions 
in which 9 is absent. In the case of free upper and lower boundaries the differences 
in the critical Rayleigh numbers between solutions with and without 9 are most a 
few per cent. In the case of rigid boundaries the difference is substantially lower; at  
most about 1 % at aspect ratio 0.5, with the difference falling rapidly with either a 
smaller or larger value of A (Frick & Clever 1980). Hence we may conclude that the 
role of 9 in the representation of the velocity field is of minor significance for this 
linear problem. However, in the case of nonlinear convection, the nonlinearity of the 
equations of motion introduces an additional coupling between $ and $. This is 
caused by the fact that the term 

v2e + R(A~; ,$  + a,$) = (~a:, $ - a, $1 8,s - AA,$~,o + ( ~ a ; ~  9 + a, $1 a,e + ate, 

where Az denotes the Laplacian with respect to the (x, 2)-plane: 

A, = a:, + a;,. 

(llm. [(E$-.V)€+I 

in (7 a)  is non-zero for scalar fields $ which depend on y. Since we are not able to assess 
a priori the influence of $ on the $-component of the velocity caused by the nonlinear 
coupling, we solve the problem only in the case of a large-Prandtl-number fluid, 
where this coupling no longer exists. We also rely on the established linear-stability 
results which have demonstrated that the neglect of aizO affects the results only 
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slightly. Hence we shall solve the equations under the assumption aiz8 = 0 and 9 = 0. 
We shall leave the problem of a finite-Prandtl-number fluid to a later time. 

In  the limit of large Prandtl numbers we approximate (7a-c) by a simpler set of 
equations in which 9 is absent. In  this approximation the generation of a scalar field 9 
by the perturbation temperature field of the linear term aVze is neglected, and in the 
case of steady convection rolls the following equations result: 

vu2++axe = 0, (9) 

vw+Ra,* = -az$aze+az+aze. (10) 

We note that the scalar fields $ and 0 depend on all three spatial co-ordinates. The 
boundary conditions at the horizontal boundaries of the layer are given by 

+a,+=e=o,  +-=a;a+e=o (z= +ti ( i l a ,  b )  

for rigid and free surfaces respectively. Here it is assumed that the thermal conductivity 
of the solid region far exceeds that of the fluid. At the vertical bounding surfaces the 
boundary conditions are given by 

+ a a , e = o  ( y =  +*I, (12) 

where we have assumed rigid, adiabatic surfaces. 

expand the variables $ and 0 in terms of a series sum of orthogonal functions: 
We solve (9) and (10) numerically, using the Galerkin method. Accordingly, we 

Since the basic equations (9) and (10) contain an even number of y-derivatives, the 
solutions may be separated into non-combining sets, which are either even or odd in 
the y-direction. Since the critical Rayleigh number of the even-y solutions is lower than 
that of the odd solution, we may expand in the following sets of functions, which satisfy 
the boundary conditions : 

h!(y) = cos [(2v- l)ny], 

E(Y) = cos [ ( 2 y  - 2) 

(15) 

(16) 
The functions 

satisfy the rigid- and free-surface boundary conditions for $, (1 1 a) and (1 1 b) respect- 
ively. Both (1 7) and ( 18) represent complete sets of alternating odd and even functions 
for alternating values of@. The use of (17) for convection problems was introduced by 
Chandrasekhar (1961, p. 635) for problems in which a scalar variable must satisfy 
four boundary conditions of the type (1 1 a) for +. 

The functions 
fj(4 = sin r P 4 Z  + 811 (19) 
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for 8 are identical with the free-boundary representation (18) for $. The summation 
in expressions (13) and (14) runs through all integers - co < A < + 00 (covj excluded), 
1 < Y < co and 1 6 /3 < co. As in Clever & Busse (1974) the symmetry of (9) and (10) 
allows us to restrict ourselves to the case of a reduced subset of functions in the x- 
direction. With the present representation for $ and 8 we may restrict ourselves to 
solutions for which 

CAvp = -C-,v#e, ( 2 0 4  

and it is convenient to introduce a trigonometric representation for the x-dependence 
of the problem instead of the complex representation ic,,,! used in (13). Hence we 
replace e4,- in ( 13) and (14) by 

h@) = sinhax, ( 2 1 4  

fi(z) = coshax (21b) 

respectively. Accordingly, ic,,,) is replaced by cAvj in (13). 
For application of the Galerkin method we substitute expressions (13) and (14) into 

(9) and (lo), multiply by $,,, and Oxpy respectively, and average over the fluid region. 
The following set of coupled nonlinear algebraic equations for cAVj and b,, is obtained: 

where the summation convention has been applied. For computational purposes it is 
necessary to restrict the unknown coefficients to a finite number. Following the 
methods developed by Busse (1967), Denny & Clever (1974) and subsequently Clever 
& Busse (1974) for the two-dimensional case, we introduce a trunction parameter N, 
such that all coefficients with 

are neglected. Hence the expressions in (22 a) and (22 b) extend over We range 

h + v + / 3 >  N (23 1 

~ + , u + y  < N. (24) 

The calculation of the unknown coefficients IpgAvfl in (22) from the terms in (9) and 
(10) is straightforward. We denote an average over the fluid region by angular brackets, 
and write, for example 

I & h V f l  = ($Kpy v4A8 $ h p > .  

The set of equations (22) contains one further subset in which only variables with 
even values of h + /3 are present. Although this symmetry property does not exclude 
solutions in which both even and odd values of h + /l are present, all solutions which 
exist close to the critical Rayleigh number are contained in this subset. Numerical 
experiments were performed in which attempts were made to generate solutions with 
both even and odd values of A + B. In  all cases, the coefficients with odd values of h + 
approached zero as the solution converged. With the symmetry properties described 
above we solve (22a, b) for the coefficients b,,, and c,,,for various values of R, A and 
a. For values of N = 9,11 and 13 we thus have 104, 195 and 328 unknown coefficients, 
which is a considerably larger number than in the two-dimensional case. Here the 
number of unknown coefficients increases with N6 as opposedto N4for two-dimensional 
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R 
FIQURE 2. The Nusaelt number as a function of Rayleigh number for various valuea of 

the aspect ratio (given on curves). All curves for a = a,. 

convection rolls. Additionally, since the computational cost increases with the number 
of unknowns to the third power, the addition of the third dimension increases the 
computational scope enormously. In order to ensure accuracy of the solution we shall 
increase the value of N, for given fixed values of the parameters R, a and A,  until the 
coefficients with h + v + /3 > N contribute negligibly to the solution. This is regarded 
as satisfactory if the convective heat transport changes by less than 1 yo aa N is 
increased to N + 2  (see Denny & Clever 1974). Representative calculations with 
larger values of N indicate that this procedure insures accuracy of the solution to 
within about 1-1-5 yo for all values of the parameters investigated. 

3. Results 
The equations developed in $ 2  are solved numerically for a wide range of the 

parameter space R, A and a for various values of the trunction parameter up to N = 13. 
The aspect ratio varies between the limits 0.01 Q A Q 100 in order to approach the 
limiting cases of a layer of infinite horizontal extent and of Hele Shaw convection. 
Solutions in the range R, < R Q 50R, have been calculated within the limitation 
imposed by numerical convergence of the solution for sensible values of the truncation 
parameter. Solutions for various values of the wavenumber, a, have been calculated 
to determine the influence of wavenumber on the convective heat transport. In  order 
to compare with previous experimental and theoretical measurements of Hele Shaw 
and porous-medium convection, and expand on several of the assumptions that have 
been made in previous work, both rigid and stress-free horizontal boundaries have 
been investigated. 

In figure 2 the Rayleigh-number dependence of the Nusselt number for various 
values of the aspect ratio A at a = a, is plotted. It is interesting to note the small 
effect of aspect ratio on the heat transport at large values of the Rayleigh number. For 
example, at R = lo6 the heat transport across the layer varies by less than a factor of 
two for aspect ratios in the range 0 < A Q 20. For R = 106 the heat transport a t  
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FIGURE 3. Nusselt number as a function of R/Rc for several values of the aspect ratio (given on 
curves) a t  a = a,. The results show the strong dependence of Nu on A for large values of A as 
R/R, increases from 1. 
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FIOURE 4. Deviation from the Hele Shaw approximation at elevated values of R/Rc for both 
rigid and stress-free boundaries. Note the more rapid convergence to the asymptotic Hele Shaw 
results in the case of free boundaries. 
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FIQURE 5. The wavenumber dependence of the Nusselt number for convection at A = 20 with 
free boundaries. Lower curve a = a,. Upper curve is calculated with the wavenumber which 
maximizes the heat tramport. 

A = 10 is already more than a factor of two smaller than for A = 0, and for A = 20 
more than a factor of four. This is caused by both the rather small slope of the Nusselt 
number (aNu/aR) for large-amplitude convection, and the large initial slope for 
increasing values of A which allows the heat transport to first essentially ‘catch up’ 
with the heat transport at small A. We also note that for large values of A the heat 
transport increases proportionally to P’*, as in the case of two-dimensional BBnard 
convection. The surprising result that the Nusselt number varies only slightly with 
the aspect ratio may be contrasted with the asymptotic results for convection in a 
Hele Shaw cell. Here the Nusselt number and all properties of convection are dependent 
on the quantity RIA2 in the limit A + 00. In  the case of small-amplitude convection 
the Hele Shaw approximation is quite good for A 2 20. At A = 20 the critical Rayleigh 
number agrees to within less than 1%. However, as the amplitude of convection 
increases, the approximation becomes increasingly less accurate and the value of A 
required to approach the Hele Shaw results increases strongly with Rayleigh number. 
In  figure 3 the results are plotted using the ratio RIR,, which is the appropriate 
scaling parameter for large aspect ratio. As may be seen, the Nusselt number is 
relatively independent of A for A 2 10 in the neighbourhood of the critical Rayleigh 
number. However, as the amplitude is increased, deviations from the Hele Shaw 
approximation occur for all finite values of A. The numerical results indicate that 
for every value of A the Hele Shaw approximation becomes unsatisfactory for a 
sufficiently large value of RIR,. Difficulties in numerical convergence of the solution 
for very large values of A have precluded quantification of this result. 

In  order to assess more easily the influence of aspect ratio on the Hele Shaw approxi- 
mation, the cases of stress-free horizontal boundaries at R/R,  = 5 and 8 are compared 
(figure 4). For both Rayleigh numbers the free-boundary results at A = 100 approach 
reasonably closely the asymptotic Hele Shaw results. On the other hand, the deviation 
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FIGURE 6. Comparison of heat transfer in a Hele Shaw cell and in a porous medium. The shaded 
area represents the range of experimental values given in Straw (1974). The solid curves for 
Hele Shaw and porous-medium convection are theoretical calculations. 
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FIGURE 7. Comparison of calculated and measured heat-transfer values for various values of A .  
Experimental data: A ,  Arnold (1978); 0 ,  Ozoe et al. (1974); 0,  Wu & Edwards (1980). The 
present calculations are given by the curves. 
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T 

FIGURE 8. Comparison of the temperature and velocity field with the 
experiments of Biihler et al. (1979). R = 6270, A = 0.26. 

from the Hele Shaw approximation for finite-amplitude convection in the case of rigid 
boundaries is clearly noticeable. For A = 20 the deviation is already greater than 20 yo. 

In  the limit A + m  we obtain an analogy between Hele Shaw convection and con- 
vection in a porous medium. In  the case of the onset of convection this analogy is 
exact because the onset of convection in both cases is governed by two-dimensional 
disturbances. However, for supercritical convection amplitudes there are a number of 
factors influencing the convection which invalidate this analogy. In  addition to the 
influence of finite aspect ratio for purely two-dimensional convection as discussed 
above, there seems to be a tendency for the convection wavelength to decrease in the 
case of porous-medium convection, whereas this mechanism is absent in Hele Shaw 
convection. Straus ( 1974) has compared two-dimensional calculations of porous- 
medium convection with experimental measurements and has found that the heat 
transport calculated with the wavenumber that maximizes the heat transport gives 
the best agreement. The results shown in figure 5 indicate the magnitude of this 
wavenumber effect for two-dimensional convection rolls. Additionally, Straus has 
shown that above a second critical Rayleigh number two-dimensional convection in 
a porous medium is unstable to three-dimensional disturbances. In  a later paper 
(Straus & Schubert 1979) three-dimensional convection in a porous medium has been 

16-2 
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Experiment Theory 

FIGURE 9. Comparison of the temperature field with experimental measurements by Koster 
(1980) for convection in a Hele Shaw cell. R = 2R,, A = 18-10, a = 4.8 (corresponding to the 
experimental conditions). 

considered, and it has been shown that the heat transport is larger than for two- 
dimensional convection for Rayleigh numbers above 2 or 3 times the critical linear- 
stability value. 

Since each of these effects taken separately serves to increase the heat transport in 
porous-medium as compared to  Hele Shaw convection, increasingly larger heat 
transport differences between the two cases are expected as the Rayleigh number is 
increased. In figure 6 we compare previous porous-media results with the heat transport 
calculated in the present study. It can indeed be seen that large differences occur at  
large Rayleigh numbers. If the Rayleigh number is increased beyond RIR, = 9, the 
convection will become time-dependent for the case 01 = rn (Kvernvolcll979). Schubert 
& Straus (1979) obtained non-steady heat-transport fluctuations of two-dimensional 
convection through porous media for the oscillatory case. The results of Caltagirone 
(1975) also show that the time-dependent solutions are different from that of the steady 
solution at  a given Rayleigh number. A comparison of the heat-transport results of 
the present investigation with previous experimental results is given in figure 7. It is 
worthwhile to note that, at least for A = 4, the differences between theory and 
experiment are approximately as large as the scatter in experimental data. We note 
also the good quantitative agreement for aspect ratio unity. At A = 1, based on the 
approximation of convection rolls with two velocity components, the largest dis- 
crepancy in the calculated values should be expected, and we may conclude that the 
approximation is justified by the good agreement. For A = 4 and especially for A = 8 
the differences between the present and the experimental results are larger. These 
differences are caused by deviations from adiabatic side-wall conditions in the 
experiment, whose effect on Nusselt number increases with increasing aspect ratio. 

In  addition to the heat transport, which is an averaged property of the convection, 
it is also of interest to compare more detailed properties of the convection. The 
streamlines and isotherms for the experimental condit,ions measured by Biihler, 
Kirchartz & Oertel(l979) are given in figure 8. In addition figure 8 shows the quantities 
appz and appx which have been measured by these authors in convection experiments. 
In  principle, one can construct the temperature field from these interferometric 
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photos, although this has not been done by Buhler et al. However, the good agreement 
in the computation of these quantities allows us to present the temperature fields of 
these experiments. In  figure 9 a comparison with the Hele Shaw experiment of Koster 
(1980) is presented. Here again we find a good agreement between predictions and 
measurements. The theoretical predictions shown in figures 8 and 9 are calculated a t  
the y = 0 plane. 

4. Concluding remarks 
In  the presence of side walls, strictly two-dimensional convection rolls, depending on 

all three spatial co-ordinates, must be regarded as an approximation because of the 
generation of a component of vertical vorticity caused by the temperature gradient 
parallel to the axis of the rolls. Even in the case of an infinite-Prandtl-number fluid 
this additional velocity component is required for a general solution. However, nearly 
all previous investigations have neglected this additional feature in the case of rigid 
boundaries owing to the added mathematical complexity, even in the solution of the 
linear problem for the onset of convection. Recent theoretical work on the onset of 
convection by Davies-Jones (1970), for free boundaries and by Frick & Clever (1980), 
for rigid boundaries, has demonstrated that the error introduced by this assumption is 
minor, at least in terms of the value of the critical Rayleigh number. This conclusion is 
considerably stronger for the rigid-boundary problem. The comparison of the heat 
transport calculated in the present investigation with experimentally measured 
values suggests that this assumption remains justified for finite amplitude. 

The analogy that exists between Hele Shaw and porous-medium convection in the 
case of the onset of convection has been generally regarded as a basis for extrapolation 
into the finite-amplitude regime and comparison between the twq cases. The postu- 
lated analogy has been convenient and useful in practical application because of the 
difficulties in observing and properly measuring and quantifying the experimental 
conditions. The results of the present study demonstrate that changes in the wave- 
number and the three-dimensionality of porous media convection cause rather strong 
deviations from even idealized Hele Shaw convection in the limit A +a. Additionally, 
in the realistic case of finite A,  the Hele Shaw approximation becomes inaccurate even 
for large values of A as the convection amplitude increases. Combining these several 
effects we find rather large differences between the two cases for Rayleigh numbers 
greater than a few times the critical value for values of the aspect ratio for which a 
nearly perfect analogy exists a t  the onset of convection. As the Rayleigh number is 
increased further, the deviations increase. In the limit of large Rayleigh number the 
Nusselt number for Hele Shaw convection has been shown to increase approximately 
as Roa3, whereas for porous-medium convection the Nusselt number typically increases 
faster than RO.=. 

We thank Professors U. Muller of the Kernforschungszentrum Karlsruhe and. 
F. H. Busse of UCLA for many helpful discussions during the course of this work. 
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Deutschen Forschungsgemeinschaft and the Atmospheric Science Section of the 
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